Nuclear High Altitude EMP Dave Casler KEØOG

Sources

- DHS, Strategy for Protecting the Homeland Against Threats of EMP and GMD, Appendix A, "Technical Background," 27 Jan 2022
- DOE, U.S Department of Energy Electromagnetic Pulse Resilience Action Plan, Jan, 2017
- MIL-STD-464A, *Electromagnetic Environmental Effects: Requirements for Systems,* Section A5.5, 24 Dec 2020
- Perotoni et al, "Generation of Double-Exponential EMC Pulses with Software-Defined Radios," *Advanced Electromagnetics*, Vol 11, No. 3, Sept 2022.
- Wikipedia: numerous articles on High Altitude Nuclear EMP
- A Source I wish I had: MIL-STD-2169C, Notice 1, (Secret), *High-Altitude Electromagnetic Pulse Environment,* 31 Mar 2020
- https://www.empshield.com/emp-report/ (many sources included)

Original Question

- David Martin (no call given, 143 David Martins in QRZ)
- "Are there any transceivers on the market today that would survive high-altitude nuclear electromagnetic pulse from an atom bomb? Or, can a vacuum tube radio survive that?"
- Short answer: like lightning resiliency, the entire system (antenna, transmission line, grounding, and electronic equipment) can help provide protection

Hardtack 1 Teak 1 Aug 1958 3.8 Mt, 34 km Operation Newsreel

Teak Side Effects

• EMP observed at the Apia Observatory at Samoa was 4x any solar storm

Hardtack 1 Orange 12 Aug 1958 3.8 Mt, 76.8 km Operation Newsreel

Starfish Prime 20 Jun 1962 1.4 Mt, 400 km Operation Fishbowl

Starfish Prime Side Effects

- Damaged electronics in Honolulu and New Zealand
 - Fused 300 street lights on Oahu
 - Set off about 100 burglar alarms
 - Failure of a microwave repeater on Kauai
- Produced an artificial radiation belt
 - Destroyed 3 satellites: Ariel, TRAAC, and Transit 4B
 - Damaged 3 satellites: Cosmos V, Injun I and Telstar 1
 - NASA concerned because 4 months after, radiation dose was >0.6 Gy/day for a wellshielded capsule in polar orbit (for comparison, a pelvic CT scan is 0.006 Gy)
- Effective satellite kill radius about 80 km

Soviet Test Side Effects

- EMP fused 570 km of overhead telephone lines with a measured current of 2,500 A
- Started a fire that burned down the Karagande power plant
- Shut down 1,000 km of shallow buried power cables between Tselinograd and Alma-Ata

List of high-altitude nuclear explosions [edit]

See also: List of artificial radiation belts

Mission	Date	Yield	Altitude			
USA Hardtack I – (Operation Newsreel) – Johnston Atoll, Pacific Ocean						
Yucca	28 April 1958 1.7 kt		26.2 km			
Teak	1 August 1958	3.8 Mt	76.8 km			
Orange	12 August 1958	3.8 Mt	34 km			
USA Argus – South Atlantic Ocean						
Argus I	27 August 1958	1.7 kt	200 km			
Argus II	30 August 1958	1.7 kt	240 km			
Argus III	6 September 1958	1.7 kt	540 km			
Soviet Union – 1961 tests – Kapustin Yar						
Test #88	6 September 1961	10.5 kt	22.7 km			
Test #115	6 October 1961	40 kt	41.3 km			
Test #127	27 October 1961	1.2 kt	150 km			
Test #128	27 October 1961	1.2 kt	300 km			
USA – Dominic I – (Operation Fishbowl) – Johnston Atoll, Pacific Ocean						
Bluegill	3 June 1962	failed				
Bluegill Prime	25 July 1962	failed				
Bluegill Double Prime	15 October 1962	failed				
Bluegill Triple Prime	26 October 1962	410 kt	50 km			
Starfish	20 June 1962	failed				
Starfish Prime	9 July 1962	1.4 Mt	400 km			
Checkmate	20 October 1962	7 kt	147 km			
Kingfish	1 November 1962	410 kt	97 km			
Tightrope	4 November 1962	<5 kt	30–80 km			
Soviet Union – Project K – Kapustin Yar						
Test #184	22 October 1962	300 kt	290 km			
Test #187	28 October 1962	300 kt	150 km			
Test #195	1 November 1962	300 kt	59 km			

Hardtack I Orange

View of Starfish Prime through thin cloud, as seen from Honolulu, 1,300 km away.

The debris fireball and 8 aurora created by the Starfish Prime test, as seen from a KC-135 aircraft at 3 minutes.

So What Happened That October?

\coloneqq Cuban Missile Crisis

Article Talk

From Wikipedia, the free encyclopedia

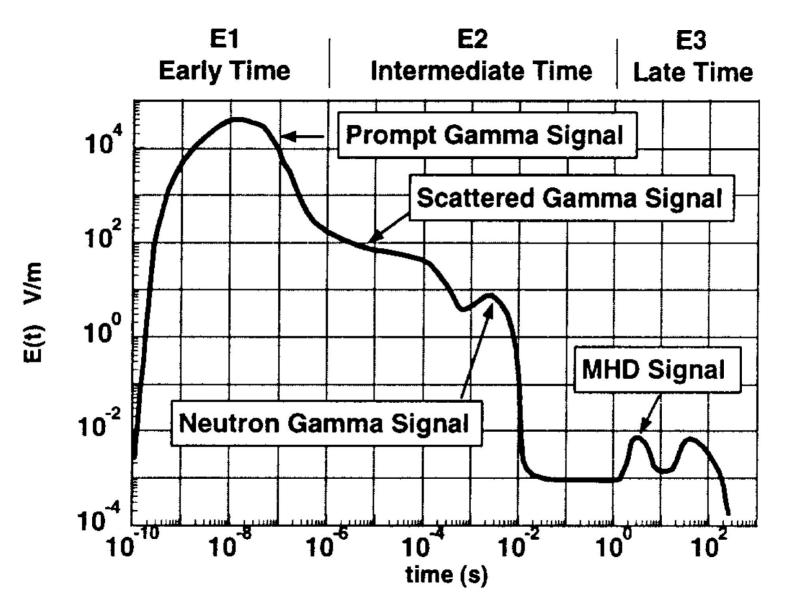
"Missile Crisis" redirects here. For the missile crisis in Cyprus, see Cypriot S-300 crisis. "Cuban Missile" redirects here. For the baseball player, see Aroldis Chapman.

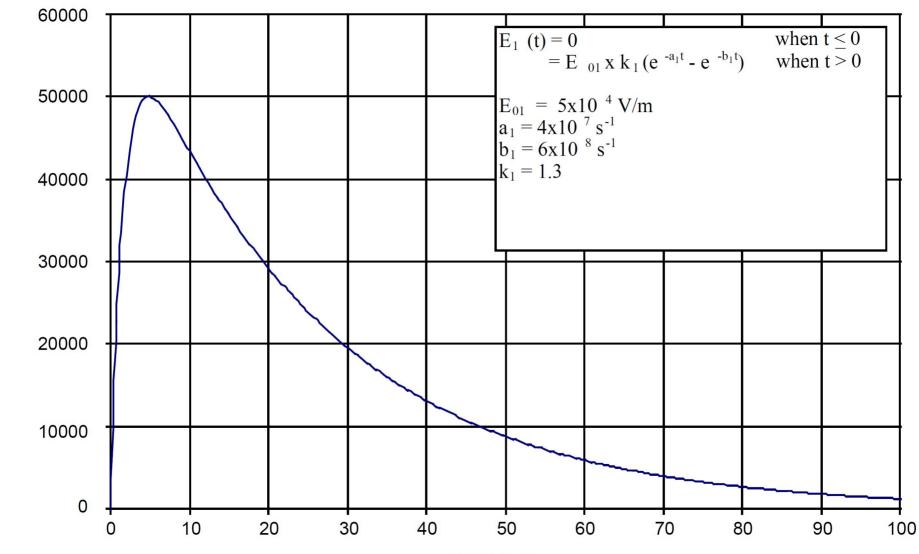
The **Cuban Missile Crisis**, also known as the **October Crisis (of 1962)** (Spanish: *Crisis de Octubre*) in Cuba, the **Caribbean Crisis** (Russian: Карибский кризис, tr. *Karibsky krizis*, IPA: [kɐ 'riipskiɪj 'kriiziɪs]) in Russia, or the **Missile Scare**, was a 13-day (October 16 – October 29, 1962) confrontation between the United States and the Soviet Union, which escalated into an international crisis when American deployments of missiles in Italy and Turkey were matched by Soviet deployments of similar ballistic missiles in Cuba. Despite the short time frame, the Cuban Missile Crisis remains a defining memory in American patiental accurity and puelles were

Read

Create account Log in ••

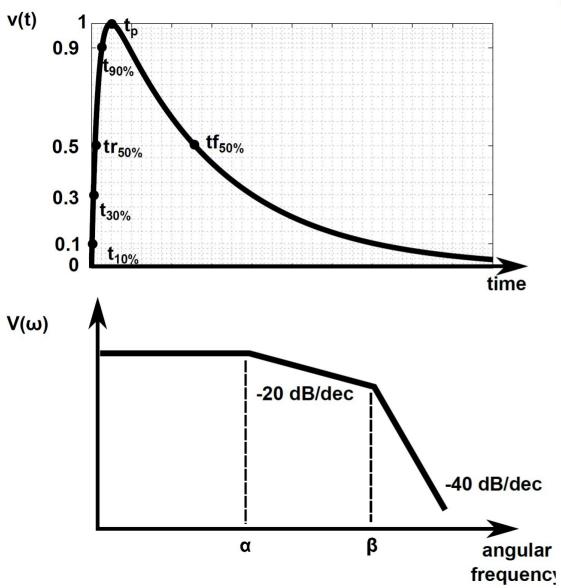
Edit View history Tools V


文A 82 languages ~


0

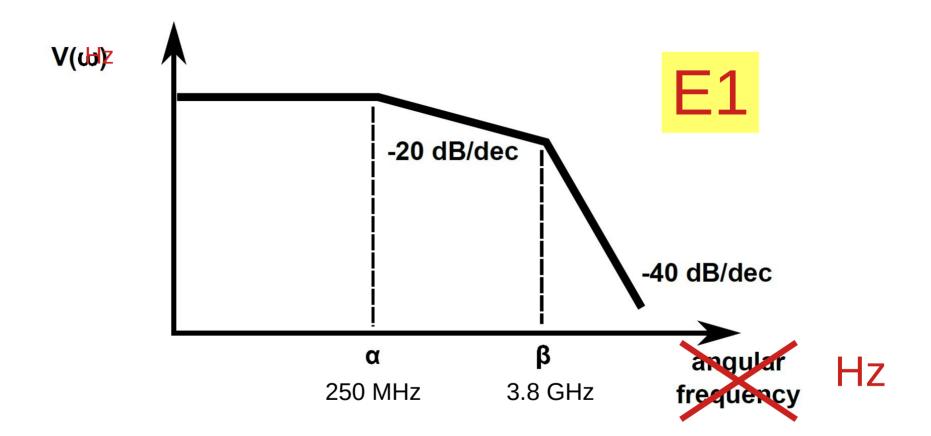
So What is HAEMP Really?

- Nuclear scientists have been aware of EMP from very early days
- Extensive test data was gathered during space tests
- The summation of all of this is distilled in the threat document MIL-STD-2169 (Classified)
- Lots of generalized info readily available (Wikipedia and much more)
- Lots of folklore out there too, some of it truly imaginative



TIME (ns)

FIELD STRENGTH (V/m)


Dare I Ask How Much Energy is in E1?

- Let's say 50 kV/m, 377 Ω for air impedance, gives E²/R = 6.6E6 watts/meter²
- Or 6.6E6 W/m² x 30E-9 s = 0.198 mWs/m²
- And then the E1 pulse is gone!
- So we need to protect against a high voltage for a very short period of time with not enough energy to destroy discrete components
- Over what frequency range?

TABLE 1. Parameters for some Double Exponential Functions in EMC - normalized amplitude.

Application	α [1/s]	β [1/s]	Rising time	Falling time
Lightning DO160 and MIL-STD- 464 [22] [23]	11,354	647,265	$t_r = 6.4$ μs	$\begin{array}{l}t_f = 69\\\mu\mathrm{s}\end{array}$
NEMP E1 [14]	4E7	6E8	$t_r = 4.88 \text{ ns}$	21.97 ns
NEMP E2 [14]	1E3	6E8	$t_r = 0.24 \ \mu s$	0.69 ms
NEMP Bell [16]	4E6	4.76E8	$\begin{array}{c}t_r\\0.01\ \mu\end{array}=$	$t_f = 0.17$
Lightning Type 1 IEC 60060 [21]	14E3	25e5	T1 = 1.2 μs	$T2 = 50$ μs
Lightning Type 2 IEC 60060 [21]	5E4	17.3E4	<i>T</i> 1 = 8	T2 = 20
EFT [19]	1.8E7	3.1E8	$t_{r10to90} = 5 \text{ ns}$	$t_{f50} = 50 \text{ ns}$
ESD fast wave [17] [24]	8.3E10	5E10	$t_{r10to90} = 1.2 \text{ ns}$	$t_{f50} = 2$ ns
ESD slow wave [17] [24]	4.5E11	5E11	$t_{r10to90} = 22 \text{ ns}$	$t_{f50} = 20 \text{ ns}$
This study	15,354	647,265	$t_r = 5.90 \ \mu s$	$t_f = 51.7 \ \mu s$

So How Can We Protect Our Stuff?

- Can't rely on ordinary Gas Discharge Tube (GDT) technology —GDTs take 100 ns to conduct—by then the pulse is gone
- But: there are several devices that can conduct down to subnanosecond range
 - Some types of GDTs using different gasses, e.g, krypton in glass
 - Transient voltage suppression (TVS) diodes (avalanche TVS is 50 ps)
 - Metal-oxide varistor (MOV) (some are sub-nanosecond)
- Does anyone put all this in a package? Yes.

What Does EMP Shield Do?

With EMP Shield you will have:

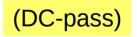
EMP Protection All Phases an EMP (E1, E2, & E3)

Lightning Protection

100% Lightning Guarantee Backed By a \$25,000 Insurance Policy **Solar Flare Protection**

Up to 228,000 Amps

HF/VHF/UHF Radio EMP Protection up to 1500 Watts with N-Connectors (ANT-1500-N)



If you order, use discount code KE0OG

Next Generation EMP Protection With Military Certified Testing.

Listed by the Department of Homeland Security.

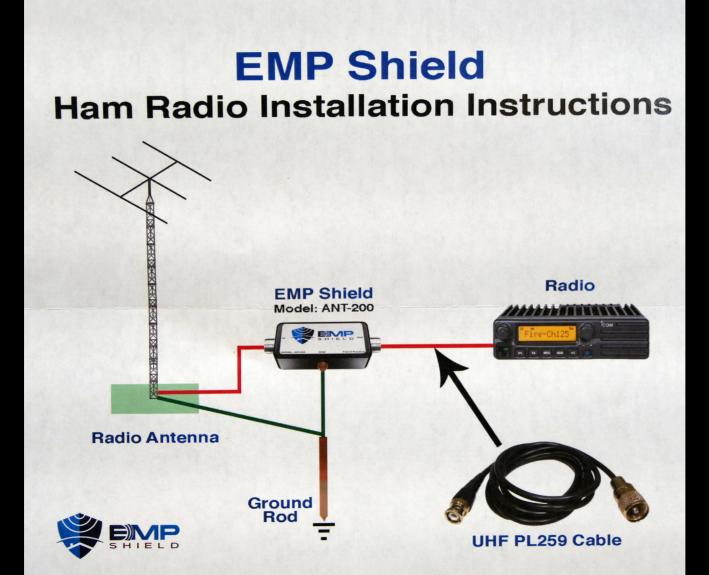
\$379.00

1

Freedom Sale! - Save an extra 10% Off this EMP Shield in Your Cart

Model: ANT-S1500 Patented

and and the state of the second of


No. W. ave

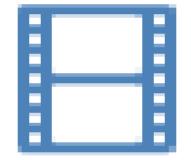
11、12、14、15、14、15、14、15、14、15、14、15、

NEMA Rating:	NEMA 4	
IP Rating Met:	IP65	
Maximum Continuing Operating Wattage:	1500 Watts	
Specification Met:	UL 1449; CE; MIL-STD-188-125-1	
Voltage Protection Rating:	Ant-G 1200 Vpp (3600 watts)	
Response Time:	< 1 nanoseconds	

If You Like to Look Up Patents

- US 10,530,151, 7 Jan 2020
- AUS 2019206390, 10 Jun 2021
- Application 2023/0147803
- CA 3,088,002, 18 Oct 2022
- US 10,742,025 11 Aug 2020
- AUS 2020361439, 28 Jul 2022
- US 10,938,204, 2 Mar 2021
- US 11,451,051, 20 Sep 2022
- US 11469,592, 11 Oct 2022

Things Dr. Carty Told Me


- Pointed me at different GDTs
- Vacuum tubes are unaffected by E1
- In an EMP event, the magnetosphere bulges and there are serious ground currents
- Takes hours for ionosphere to settle; until it does there can't be another E1 pulse
- Devices with clamshell covers, such as my IC-7300, will not admit E1—has to come in via power or antenna
- He makes EMP equipment for everything from ham radio to homes and vehicles as well as commercial grid stations, etc.

EMP (E1) Protection Hot Area of Interest

- Department of Homeland Security, working with other departments including DoD, is moving with the due speed of government to assess threat, make plans, set up testing regimes, and so on.
- EMP Systems has been involved during the process and has developed numerous products across many areas
- Other companies are getting interested
 - Faraday Defense has something for sale for every one of your worries (whether your worry is based on science or gossip)

Will HAEMP Ever Happen Again?

- In the 1960s, only US and USSR had the capability and both nations tested exoatmospheric nuclear weapons
- Now several other nations have this capability but none have tested
- It is in nobody's interest to create a HAEMP event because they're shooting themselves in the foot by doing so
- Just take a look at satellites
 - In 1962, there were \sim 100 satellites
 - In 2023, there were >7,000 satellites, and some companies are adding to that number regularly

Finishing Thoughts

- I've got lightning arrestors on everything and have added one EMP Shield ANT-1500
- If there is a HAEMP event, we have much bigger problems (we're at war—nuclear war!)
- Let's worry about disasters that already happen all too frequently (fires, floods, tornadoes, hurricanes, drought...the list goes on)
- I, for one, plan to sleep soundly tonight!